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Abstract-A numerical study has been made to analyze the wall conduction effect on the natural convection 
in an anisotropic fluid-saturated porous medium filled in a rectangular cavity. The governing conservation 
equations are solved by a SIMPLE algorithm. The numerical results indicate that the anisotropic per- 
meability influences the ffow field and heat transfer rate significantly. A critical value of the anisotropic 
thermal difksivity ratio may exist such that the Nusselt number reaches a minimum. This critical value 
decreases with increasing the value of the anisotropic permeability ratio. Moreover, wall conductance effect 

can lead to large changes in the Nusselt numbers. 

1. INTRODUCTION 

NATURAL convection in a porous medium has been 
studied extensively over the past twenty years due to 
the numerous application in geophysics, oil recovery 
techniques, thermal insulation engineering, packed- 
bed catalytic reactors, and heat storage beds. Excellent 
reviews are available [l-3]. So far, the investigations 
have usually been concerned with isotropic porous 
media. The natural convection in a rectangular cavity 
filled with an isotropic porous medium has been studied 
and reported in the literature [4-81. However, many 
porous materials are anisotropic, for example, fibrous 
medium presents a form of anisotropy. Another 
important example is groundwater motion in sedi- 
ments and other anisotropic rocks, especially in areas 
with geothermal activity. Kvernvold and Tyvand (91 
and Bories [ 101 studied the effect of anisotropy on the 
criterion for the onset of convection in a horizontal 
porous layer. Burns et al. [I I] incorporated aniso- 
tropic permeability in their study of convection in 
verticai slots. 

The reported studies dealing with natural con- 
vection in a porous cavity have considered the inter- 
action between convection in the fluid-filled porous 
media and conduction of heat of obstruction are Iim- 
ited to the partitioned porous enclosure. Bejan and 
Anderson [12] demonstrated that the insert of a ver- 
tical impermeable partition reduces significantly the 
net heat transfer rate through the layer. Bejan (131 
examined the effect of centrally-located internal 
obstruction on heat transfer through a two-dimen- 
sional porous layer heated from the side. Three types 
of Bow obstruction were considered : horizontal dia- 
thermal partition, horizontal adiabatic partition and 

vertical diatherma] partition. Tong and Subramanian 
[ 141 and -~ke~ann et al. [ 151 investigated the natural 
convection in a rectangular enclosure, vertically div- 
ided into a region filled with a fluid and another filled 
with a fluid-saturated porous media. In addition, Kim 
and Viskanta [I61 showed that the thermal boundary 
condition (wall conductance) could lead to significant 
changes in the convective heat transfer coefficient for 
a viscous fluid in an enclosure. However, the studies 
have neglected the interaction between convection in 
the fluid-filled porous cavity and conduction of heat 
in the walls forming the enclosure by using idealized 
boundary conditions such as those corresponding to 
a prescribed temperature or heat Bux. The wall con- 
ductance and anisotropic effects in a porous cavity 
seem not to have been investigated. This has motiv- 
ated the present investigation. 

The purpose of this paper is to examine analytically 
the effects of wall heat conduction and anisotropy on 
natural convection in an anisotropic fluid-saturated 
porous medium filled in a rectangular cavity having 
finite wall conductances. Since there are many govern- 
ing parameters in such a problem only the square 
cavity is considered in this study, and the vertical and 
the horizontal walls are assumed to be of the same 
material. The results will provide useful information 
for the storage of agricultural products, insulation 
problems and nuclear engineering. The left and right 
of the outside vertical walls of the porous cavity are 
imposed constant but different temperature, while the 
horizontal connecting walls are assumed to be insu- 
lated on the outside. The anisotropy in the perme- 
ability and in the thermal diffusivity is considered. 
The resulting governing equations are soIved by using 
the SIMPLE algorithm. 
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NOMENCLATURE 

anisotropic thermal diffusivity ratio 
gravitational acceleration 
height of the porous cavity 
height of the enclosure 
thermal conductivity 
permeability 
anisotropic permeability ratio 
height of the porous cavity 
height of enclosure 
local Nusselt number 
average Nusselt number 
pressure 
Darcy modified Rayleigh number 

temperature 
velocity component in s, y directions 
dimensionless velocity in x, y directions 
horizontal and vertical coordinates 

X. Y dimensionless coordinates 

Greek symbols 

; 
thermal diffusivity 
thermal expansion coefficient 

(I dimensionless temperature, 
(T- T,)I(T,- T,) 

A’ viscosiLy of fluid 

P density of fluid. 

Subscripts 
C cold 
h hot 
W Wall 

.Y .x direction 

J‘ J direction. 

2. ANALYSIS 

The physical situation and coordinate system are 
shown in Fig. 1. The rectangular porous cavity is 
formed by walls having finite conductance. The ver- 
tical and the horizontal walls are assumed to be of the 
same material. The left and right of the outside vertical 
walls of the porous cavity are imposed constant but 

different temperatures. The horizontal connecting 
walls are assumed to be insulated on the outside. The 

flow is assumed to be two dimensional. The fluid in the 
porous cavity is assumed to have constant properties 

except in so far as the buoyancy is concerned, the 
convecting fluid and the porous matrix are in local 
thermodynamic equilibrium. Darcy’s law and the 
Boussinesq approximations are employed. 

Then, the equations that account for the con- 
servation of mass, momentum, and energy for the 
porous cavity are as follows. 

Y 

i-- LZ ----1 

i--- L--__-_r 

k/L=O.14 ~,/L=O.84 L/L=O.71 

%,‘H=0.14 %/H=O.84 h,‘H=0.71 

FIG. 1. The physical situation and coordinate system. 

and for the walls : 

(5) 

where the subscript w signifies the walls quantities; K, 
and K, are the .l--direction and y-direction perme- 
ability of the saturated porous medium, respectively : 
and CL, and a,, are the u-direction and y-direction 
thermal diffusivity, respectively. The other various 
symbols are defined in the Nomenclature. 

The temperature boundary conditions at the 

interior walls of the enclosure are 

where n represents x or y. 
The temperature boundary conditions on the out- 

side walls of the enclosure are 

.V = 0, T,,, = T, ; .Y = L, T, = T c 

The boundary conditions for the velocity on the 

surface bounding the porous cavity are 
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x = L,, u=o; x=L,, u=o 

y = H,, v = 0; y = H,, v = 0. (8) 

The following dimensionless variables are intro- 
duced 

fl= s, K+ AR=?; 
h c x 

KR=k; Ra*= 
LfQP(T, - TJ 

%V 

Then, equations (l)-(5) become 

for the porous cavity : 

g+;*=o 

CJP 
u= -ax 

V= -K*Fy+Ra**D 

a0 ae a20 a% 
Uax+Var=ax’+ARaY2 

for the walls : 
2 

E&+$0 

with the dimensionless boundary conditions 

&, u=O, Q=&,,, $&$ 

Y+ (:=O;~=t&KR~ 

Y=$ VZO, 8=&,, $ 80, 
KR,, 

X = 0, 0, = 1 

X= 1, &,=o 

80, 
Y=O, Z”O 

80, Y= 1, z=o. 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

When K* = AR = 1, equations (IO)-(15) reduced 
to the isotropic porous medium with isotropic thermal 
diffusivity, and as KR = 1, the bulk thermal con- 
ductivity of the saturated porous medium is equal to 
that of the wall materials. 

In terms of new variables, it can be shown that the 
local and average Nusselt numbers are given by 

ae 
Nux = - z’ AR Y=“,,L,“,,L 

a0 

Nuy = - ax x=L,,L..L~,L 

and 

NuX = & Nu,dX 

~ 1 
Nu, = hlL 

s 
Nu,dY. (16) 

3. NUMERICAL METHOD OF SOLUTION 

A conventional numerical scheme with nonuniform 
(33 x 33) grids, as shown in Fig. 2, was applied to the 
present physical system. The finest grid, of size 0.01, 
is located adjacent to the wall. 

The numerical procedure used is based on the iter- 
ative scheme. The hybrid central/upwind differences 
is used for the convective terms with central difference 
for the diffusion terms. For the convective term, 
upwind differencing is used if the grid Peclet number 
in a given direction is greater than or equal to 2. 
Otherwise, central differences are employed. This pro- 
cedure incorporates the SIMPLE solution technique 
initiated by Patankar [17], which is based on the solu- 
tion of difference equations obtained by integrating 
the differential equations for momentum and energy 
over control volumes enclosing the nodal points. The 
set of difference equations is solved over the entire 
region of interest by obtaining new values for any 
desired variable by taking into account the latest 
known estimated value of that variable on the neigh- 
boring nodes. One iteration of the solution is complete 
when, in a line by line technique, all the lines in a 
chosen direction have been accounted for. Line inver- 
sion interaction with an under relaxation value of 0.5 
for velocity terms, 0.6 for the pressure correction term 
and 0.8 for the temperature term was incorporated to 
facilitate calculation. 

FIG. 2. Non-uniform grid system. 
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FIG. 3. The contours of isotherm for (a) KR = 0.1, (b) KR = I. (c) KR = 2, (d) KR = 10 (KU* = 10, 
K*=l.AR=l,LH=I). 

By first assuming a pressure distribution within the 
pressure cavity domain, the set of difference equations 
for the x- and y-momentum and energy equations 
for the porous cavity and the wails is solved by line 
iteration. After a sweep of the solution domain is 
completed, adjustments are made to the pressure field 
so that the continuity, momentum, and energy equa- 
tions are satisfied simultaneously. The convergence 
criterion adopted is that the change of a variable at 

any node should be less than 0.0001. 

4. RESULT AND DISCUSSIONS 

Numerical result for the streamlines, isotherms and 
the Nusselt number are obtained for 1 < K" < 10, 
1 < AR < 10, 1 < KR < 240, and 1 < Ra* d 500. 
These ranges of K* and AR are the same of those in 
refs. [lo, 18, 191. 

Figure 3 shows that the effects of the thermal con- 
ductivity ratios (KR) of wall to porous-fluid cavity on 
the isotherms of the enclosure. It is seen that, as would 
be expected, the ratio between the temperature grddi- 
ents of the porous-fluid cavity to the walls increases 
with increasing value of the KR, and that the inside 
hot and cold surfaces of the cavity are not isothermal. 

Note that. the temperature gradients do not vanish at 
the horizontal top and bottom surfaces of the porous 
cavity. 

Numerical solutions of average Nusselt number vs 
KR are shown in Fig. 4. for the high temperature side 
and the bottom side. It is seen that as KR is less than 

2.0 
1 K’=l 
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12 1.0 

0.0 

0.6 

0.4 
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,,I’ / 

I 

10 -’ 1 10 10 z 10 J 
KR 

Fro. 4. The local Nusselt number are as function of KR for 
Th side and bottom side. 
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(Cl K'=lO (D) KS=100 
FIG. 5. The velocity field of flow system for different K* (Ra* = 100, KR = 240, LH = 1, AR = 1). 

J 

(B) K-=1 

. . . . f . . . . , . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I- . . . . . . . . . . . . -. *__. . . . *.. . . * - . . . *. . ..* . . . . . * . . . . , . . . . . . 
. . . 1 ,..*.a... 

R&l00 
KR=240 
LH=I 

, I, 1 I,, I I I,, , 8,” $ 
0.0 0.2 0.4 a* 0.8 L.0 

x 

0.0 0.2 0.4 0.8 Q.8 

X 

(b) 

O.O~~,,,,,,~~‘,,‘,,.,,,,.,.~ -3u 
0 10 20 30’ 40 80 0.0 0.2 0.4 0.8 0.8 1.0 

d (d’, 

FIG. 6. The velocity dist~bution at (a) Y = OS, (b) Y = 0.47, (c) X = 0.16, (d) X = 0.47, 
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(a) K’z0.1 

(c) Km=10 

c9 -e 
d d I\ 

(d) K-=100 

FG. 7. The contours of isotherms in enclosure for selected values of K* (Rtr” = 100. KR = 240. AR = I, 

LH = I). 

100, the average Nusselt number increases sig- 
nificantly ; while, as KR is greater than 100, the avcr- 
age Nusselt numbers increases slowly. Thus, wall con- 
duction has a large effect on the A;u calculation. This 

is primarily due to the fact that the heat conduction 
in the walls causes the temperature distribution in the 
insulated (on the outside) wdlls to be deviated from 

that of the adiabatic case. Natural convection in the 
porous cavity can also induce conduction heat trans- 
fer in the surrounding walls. 

Figure 5 shows the effects of anisotropic pcr- 
meability on the dimensionless velocity, for AR = I. 
Ra* = 100, KR = 240, LH = 1. As K* < 1 (i.e. 

K,. < K,.), the velocity is larger than that of isotropic 
permeability case (K* = I); as K* > 1, the velocity 
is smaller than that of the cast of K* = 1. The s- 
component velocity U vs X are shown in Fig. 6(a) 
(for Y = 0.15), and Fig. 6(b) (for Y = 0.47) for three 
different values of K*. The y-component velocity V is 
shown in Fig. 6(c) (for X = 0.15) and Fig. 6(d) (for 
X = 0.5). These figures show that as the K* decreases, 
the local absolute velocity increases. 

Figure 7 gives the isothermal lines for different 
values of K*. As K* < 1 the convective effect is 

stronger than K * = I ; as the value of K* increases 
from one. the heat transfer mode changes from con- 
vective mode to conduction mode. That is, the Nusselt 

number decrease with increasing the value of K*. This 
phenomenon is more apparent as seen in Figs. 8 and 
9. Figure 8 shows the variation of the local Nusselt 
number with Y at three different values of K*. It is 
shown that at the bottom-left corner. as K* is smaller. 
NLI, is larger. This is because the convection mode is 
stronger, and the horizontal wall transfers more heat 
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FIG. 8. Nusselt number distributions along the high tem- 
perature side-wall of the cavity at different value of K*. 
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FIG. 9. Nusselt number distributions along the bottom wall FIG. 10. The average Nusselt number as a function of K* for 
of the cavity at different values of K*. different values of Ra* in the high temperature wall. 

to fluid when K* is smaller. The variations of the local value of K* increases, the average Nusselt number 

Nusselt number vs X-axis are plotted in Fig. 9. decreases. The results also indicate that as K* > 100, 
Figure 10 shows the effects of Rayleigh number the effect of Ra* can be neglected. 

and anisotropic permeability on the average Nusselt It would be interesting to understand the effects of 
number. The average Nusselt number increase with the anisotropic thermal diffusivity. Figures 11 and 12 
increasing value of Ra*. It is also shown that as the show the effect of anisotropic permeabilities K* and 

(a) K’z0.1 ARzO.1 

Cd) K'=l AR=O.l 

(9) K’=lO AR=O.l 

(b) K’=O.l AR=1 

(e) K’=l AR=1 

(h) K’=lO AR=1 

(c) K’=O.l AR=10 

(f) K-=1 AR=10 

(i) K-=10 AR=~o 

FIG. 11. The contours ofstreamlines for the different values of K* and AR (Ra” = 100, KR = 240, LH = I). 



3 IO WEN-JENC; CHANG and HUI-CHCAN LIN 

(b) K-=0.1 AR=1 (a) K-=0.1 ARzO.1 Cc) K-=0.1 AR=10 

(f) K-=1 AR=10 (e) K’=l AR=1 Cd) K’=l AR=O.l 

(h) Kg=10 AR=1 (i) K-=10 AR=10 (g) K-=10 AR=O.l 

FIG. 12. The contours of isotherm in the enclosure for selected values of K* and AR (Ra” = IOU, KR = 240. 
1-H 1). 

the values of K*. However, this phenomenon is not 
observed at the bottom side. Both figures indicate that 

thermal diffusivities AR on the velocity pattern and 
isotherms, respectively. Figure I1 shows that the 

closed streamlines pattern is changed as AR # I Fig- 
ure 12 shows that the convection is increased with 
decreasing the values of AR, and the convection is 
more important as the values of AR and K* decrease. 
Figures 13 and 14 show the effects of AR on the 
local Nusselt numbers at the high temperature side for 

K* = 0.1 and K* = 1. respectively. The local Nussclt 
number changes dramatically at the y-direction as the 
value of AR decreases. Both figures also indicate that 
as AR decrease. the local Nusselt number in the nearby 
corner is increasingly influenced by the wall con- 
ductance effects. Figure 15 shows the effects of AR on 
the local Nusselt numbers at the bottom side. It is 
shown that the local Nusselt number changes more 
sensitive at the x direction as the value of AR increases. 

Numerical solutions of average Nusselt number vs 
AR for three different K* values are shown in Figs. 16 
and 17 for high temperature side and bottom side, 
respectively. Figure 16 shows that a critical value of 
AR exists at which the Nusselt number reaches a mini- 
mum. This critical value decreases with increasing 

the Nu decreases with increasing the K* value 

Th side 
Ra*= 100 
KR=240 
LH=l 

KI=o. 1 8-J 
c 

26 

4 

2 I 
-1 

0 -I- 
0.0 

FIG. 13. Nusselt number distributions along the high tem- 
peraturc wall of the cavity at different values of AR for 

K* = 0.1. 
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Y 

FIG. 14. Nusselt number distributions along the high tem- 
perature wall of the cavity at different values of AR for 

K*= 1. 

_~~,~~,,,~~,~o 
0.0 0.2 0.4 0.8 , 

X 

RG. 15. Nusselt number distributions along the high tem- 
perature wall of the cavity at different values of AR for 

K” = 10. 

5. CONCLUSION 

The numerical solutions have shown significant 
effects of anisotropic permeabilities, thermal diffu- 
sivity and wall conduction on the convective heat 
transfer in a rectangular porous cavity. The results 
indicate that as the ratios of the thermal diffusivity of 
the walls to porous-fluid cavity (K3?) increase, the 
average Nusselt numbers increase. 

The average Nusselt numbers of high temperature 
side decreases with increasing the value of K*. A criti- 
cal value of the anisotropic thermal diffusivity ratio 
exists at which the Nusselt number reaches a mini- 
mum. This critical value decreases which increases the 
value of the anisotropic permeability ratio. 
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